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Linear analysis of convective stability was carried out for a system with two 
liquid layers of finite thickness in the presence of the concentration-capil- 
lary effect and a second-order interfacial reaction. It was assumed that the 
surface tension at the liquid-liquid interface depends on the concentrations 
of the reaction components. 

As a result of the Marangoni effect [i], the dependence of the surface tension at the 
boundary between two immiscible liquids on the concentration of a diffusing substance can 
lead to concentration-capillary convection [2], in the presence of the mass flux across the 
interface. Chemical reactions which take place in the two phases in contact affect the val- 
ues of concentration gradients and corresponding mass fluxes. The interfacial reactions, on 
the other hand, change the mass balance and the effective value of the surface tension. 
This change in interfacial conditions can lead to the loss of hydrodynamic stability even in 
the absence of the mass flux across the interface [3]. 

Hydrodynamic stability of a reacting liquid-liquid system is of great practical interest 
in the problems of enhancement of mass transfer in liquid extraction in the presence o~ chem- 
ical reactions, and also in the liquid phase catalytic processes in heterogeneous medi~. 

The effect of the first order volume chemical reactions on the onset of the Maran~oni 
instability in a liquid-liquid system, with infinite depth of the two phases, was considered 
first in [4] within the framework of the Sternling-Scriven model [5]. It was shown in [4] 
that chemical reactions can lead to convective instability in a system which is stable in 
the absence of reactions, even for quite small values of the rate constant. The effec~ of 
interfacial reactions, at the boundary between two liquid media of infinite depth, on zhe 
onset of the Marangoni convection has been considered in [6], also in the Sternling-Sc:i~iven 
approximation. In addition, it was assumed in [6] that one of the two reagents is in great 
excess, i.e., the reaction is quasistationary. With these assumptions, it was shown how the 
rate constant of the reaction affects the growth rate of perturbations and the dispers:~on 
curves. The effect of a heterogeneous second order reaction on the concentration-capiLlary 
instability in a two-phase system with the spherical interface was investigated in [7]~ The 
linear analysis of the Marangoni instability was used to determine the considerable efJ!ect 
of the reaction rate constant on stability limits of the system under consideration. 

We consider the convective stability of a system consisting of two liquid layers cf 
finite depth in the presence of an interfacial reaction of the second order, such that one 
of the reagents and the product affect the value of the surface tension. It was found that, 
in the presence of two surface-active components, the instability conditions are qualita- 
tively different from those in a system with only one surface-active component [3]. Ir addi- 
tion, it is shown that the nature of instability in a two-layer system with an interfaciai 
reaction depends on the diffusion coefficients in the two phases in contact. 

Consider a system of two horizontal layers with a nondeformable interface at y = C, 
bounded by solid surfaces at y = h I and y = -h2, and infinite in the x and z directions. 
The layers 0 < y < h I and -h 2 < y < 0 are filled with immiscible liquids in which reagents 
are dissolved: the reagent A in the first liquid and the reagent B in the second. A second 
order reaction A + B + C takes place only at the interface. It is further assumed that this 
reaction is irreversible; that its rate is given by Kasbs, where a s and b s are the concentra- 
tions of reagents at the interface and K is the rate constant; that the reagents react com- 
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pletely to form the product which diffuses into the first phase; and that the reagent B and 
the product C affect the interfacial tension. The Rayleigh-Taylor instability of the inter- 
facial boundary in the external mass field is neglected. 

Equations of motion of the viscous incompressible liquids in the first and second phases 
(j = i, 2) can be written using the stream function ~ and vorticity m: 

O~j O~j O~j O~j Ooj =~jhoj, 
Ot + Oy Ox Ox Oy 

co s = A%, A = 0210x ~ + OUOy 2. 

(i) 

Concentrations of the components A and C in the first phase, and of B in the second 
phase, are determined by the convection-diffusion equations: 

Oc~ r 0% Oc~ 0% Oc~ =D~hc~ ( n =  1, 2, 3), 
Ot Oy Ox Ox Oy (2) 

where c I = a; c 2 = b; c 3 = c; j = i for n = i, 3 and j = 2 for n = 2; and D I = Da , D= = Db, 

D 3 = D c- 

Solutions of Eqs. (i)-(2) must satisfy the following boundary conditions at the flat 
interface at y = 0 and solid surfaces at y = hi and y = -ha: 

b" = O: OCj O, O ~  _ O~ 2 , ( 3 )  
ax og oy 

= O: ( Oz Y 
Ob, Z 

y---- O: 

y = hi: 0r 
ax 

y = --h~: 

OZ ) Oa 

y = O :  a = % - - f b b - - f ~ c ,  

D~ ~ = - -D b_Ob = _ D ~  Oc = Kab, 
Oy Oy Oy 

0 ~  
. . . .  O, a = ao, c = O, 

Oy 

0r 
_ 0 ~  = 0 ,  b=bo. 

Oy Ox 

(4) 

(5) 

(6) 

(7) 

(8) 

Condition (4) expresses the continuity of tangentialstresses at the interface, and 
condition (6) the mass conservation at the interface. The continuity of normal stresses at 
the interface is not considered since, for simplicity, o is assumed to be sufficiently large 
so that the interface remains flat even in the perturbed state. 

We introduce the following dimensionless variables and parameters: 

D~t CJ x * -  x y * = ~  t* ~ * =  
h I h 1 h~ D~ 

[120)] , [3"1 C n 
o~*-- D-----~" t~ -  , c~ = , 

~ ao 

h--= h2 d =  Dc dl = Db 
hi ' Db " D~ ( 9 )  

M b ~  " [~,boh.___.___~, M c =  fcaoh......___.~l T = Ka~ 
ix~Db IXlDc D= 

In the following the asterisk used to denote dimensionless variables will be omitted. 
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The system of equations (1)-(8) has, in general, two trivial, stationary solutions: 

b (s) : ~ _  

co} ' )=q~} ' )=0,  a ( ' ) = l ( g - 1 ) + l ,  

l ( y + h ) +  b_~_o c(S)= /_j__ (l __ y), 
d 1 ao ddl 

R = bo + h 1 (io) 
+ - T -  " 

In practical calculations, the sign in the expression for s is chosen so that concentra- 
tions at the interface are positive. 

Consider the stability of the stationary solution (i0) with respect to small pertarba- 
tions of the stream function and concentrations, which are represented as the Fourier com- 
ponents with a dimensionless, real and positive wave number a and a dimensionless complex 
frequency 6: 

*j = % (g) exp ( lax + [~t), c,~ - -  c(fl = C,~ (g) exp (iax + fit), 

where i is the imaginary unit. 

Linearizing Eqs. (i)-(2) we obtain: 

+ w7 + a  f.j _- o, 

C%- 2 
2 a 2 2 Yi + Dbv-/-J~, )~ = a2 + DbD-n-l~3, 

r~, = iaDvD-~ 1 (ac2s) /og), 

(ii) 

(12) 

where D l = Da; D 2 = Db; D 3 = De; el(S) = a(S); c2(S) = b(S); cs(S) = c(S); 
below m = 1 for n = !, 3 and m = 2 for n = 2. 

The solutions of Eqs. (ii) and (12) are of the form 

in Eq. (12) an4 

W~ = A~ exp (--?jy) q- Bj exp (y./y) + Ej exp (-- cey) + Fj exp (ay), 

C~ = G~ exp (~y) + H~ exp (-- ~,y)  -- r~Q~ (y), 

Q~ (g) = Am exp (-- %~y) +Bm exp (YmY) + E,,~ exp (-- ag) + F,~ exp (ay) 
2 2 

(13) 

(14) 

Substituting Eqs. (13) and (14) into the dimensionless boundary conditions (3)-(8) we 
obtain a set of fourteen algebraic equations for the constants Al, A2, Bl, B=, El, E2, Fi, 
F2, GI, G2, G3, HI, H 2, H 3. This set of equations has nonzero solutions only if the deter- 
minant vanishes. The characteristic equation of this set, which can be written as ~-(a, $, 
M b, Mc, T, h, d .... ) = 0, determines the dispersion relations which relate the wave charac- 
teristics of the perturbation to all physicochemical parameters. 

Consider neutral stability for perturbations with a # 0, 6 = 0. In this case the solu- 
tions of Eqs. (II) and (12) are of the following form: 

~Fj = A) exp (ay) -b B}y exp (ay) + Ei exp (-- ay) +Fiy exp (-- ay), 

C,~ -= G~ exp (ay) -J- H~ exp (-- ay) -- r,~Q~ (y), 

Q'~ (y) = [2A'~g + (y 2 -- y/a)  BLl(exp (ay)/4a) + 

-l- [(2y + l/a) A'~ - -  (gZ + y /a  + I/2a 2) F~](exp (-- ay)/4a). 

(i5) 

(16) 

Substituting (15) and (16) into the boundary conditions, and taking into account that 
from (3) we have Ej' = -Aj', we obtain a set of twelve equations for the constants Aj', Bj', 
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Fig. i. 
0.5, d I 
4) 2. 

Fig. 2. 
1.8, d = 0.8, d I 
102; 4) 103 . 

Neutral stability curves for h = 1.5, a* = 1.3, ~ = 
= 5/6, M c = 104 , T = i: i) d = 0.8; 2) i; 3) 1.05; 

Neutral stability curves for h = 1.5, a* = 1.3, ~ = 
= 5/6, T = 0.8: i) M c = -103; 2) i0; 3) 

Fj', Gn' , Hn'. The characteristic equation is 

d e t l l a ( p ,  q ) l [ = O  (P, q =  I, 2 . . . . .  12). (i7) 
All the nonzero elements of the matrix lla(p, q)H are given in the Appendix. 

Dependence of the Marangoni number on the wave number of the perturbation, for different 
values of physical parameters, is found by numerical solutions of Eq. (17). These solutions 
also yield the neutral stability curves, which separate the regions of stability (8 < 0) and 
instability (8 > 0). Extrema of these curves correspond to the critical values of the Maran- 
goni number, which determine the threshold of instability, and also to the wavelength of the 
perturbation which grows as the Marangoni number is changed. Such a perturbationdetermines 
to a large extent that dominant mode which is responsible for the dissipative structure 
formed as a result of the onset of convective instability and stabilization of perturbations. 

The probiem of determining the neutral stability curves is the problem of findingroots 
of a complex-valued function given as a determinant of the twelfth order. This was done nu- 
merically using the Mueller method (parabolic method) [8], while the value of the determinant 
was evaluated using the standard program. Calculations were carried out in double precision. 

Neutral stability curves Mb(~) are shown in Figs. 1-4, for different values of parameters 
defined in Eq. (9). It follows from the analysis of these curves that the nature of stabil- 
ity of the system under consideration depends considerably on the relation between the dif- 
fusion coefficients of the surface-active components. If the diffusion coefficient of the 
reagent B is greater than that of the product C (d < i), and if C lowers the interracial ten- 
sion (M c > 0), then the system is always stable if, in addition, the reagent activity is 
positive, i.e., the reagent increases the interfacial tension (fb < 0, M b < 0). In this 
case, the convective instability can occur only if the reagent also lowers the interracial 
tension o and its activity reaches a certain value, which increases with decreasing values 
of d. If, on the other hand, the diffusion coefficient of the reagent is less than that of 
the product (d ~ 1.06), then the system is unstable for any negative values of the activity 
of B (M b > 0), but is stable for sufficiently large positive values of the activity. 

The family of neutral stability curves shown in Fig. 2 demonstrates the effect of the 
Marangoni number M c on the nature of stability of the system if the diffusion coefficient of 
the reagent is greater than that of the product (d = 0.8). In this case, increasing the pos- 
itive activity of the product (M e < 0) enhances the onset of instability, while the negative 
activity (M c > 0) and the positive activity of the reagent (M b < 0) stabilize the system. 
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Fig. 3. Neutral stability curves for h = 1.5, a* = 1.3, ~ = 
1.8, d = 2, d I = 5/6, T = i; I) M c = 103; 2) 102; 3) 0; 4) 
-102 , 5) -103 . 

Fig. 4. Neutral stability curves for h = 1.5, a* = 1.3, U = 
1.8, d I = 5.6, T = 102: I) d = 2, M c = -102; 2) 2 and I0; 
3) 2 and 102; 4) 0.8 and -I03; 5) 0.8 and -102; 6) 0.8 and 
10 2 . 

If the diffusion coefficient of the product is considerably greater than that of the reagent, 
the nature of the stability curves changes qualitatively. As seen from the curves in Fig. 3, 
for d = 2 even the negative activity of the product enhances the onset of instability, while 
the positive activity can increase the stability threshold of the system. It should be noted, 
however, that the stabilizing influence occurs only in a certain range of values of Mc~ and 
with an increase in the positive activity, and the corresponding decrease in Mc, the situa- 
tion changes to the opposite one. For example, for M c = -10 4 , the critical value of the Ma- 
rangoni number for the reagent Mb* becomes negative and equals -7.2"10 3 , whil& for M c = -10 s , 
we have Mb* = i.I-I0 s. 

Comparison of curves in Figs. 3 and 4 (curves 1-3) illustrates the effect of the dimen- 
sionless rate constant of the reaction T on the convective stability threshold for d > i. 
An increase in the rate constant of the chemical reaction leads to an increase in the criti- 
cal values of the Marangoni number and, therefore, stabilizes the system. For M c = -IC ~, we 
have Mb* = 3.9"10 4 and for M c = 10 3 , we obtain Mb* = -7.1"10 4 . Curves 4-6 in Fig. 4 illus- 
trate that increasing the value of T has a stabilizing influence on the system even for d < i. 

It follows from the results obtained above that the effect of t~e ratio of diffusion 
coefficients on the Marangoni instability is in qualitative agreement with the main results 
on the theory by Sternling and Scriven [5], which was developed for the case of a single 
surface-active component, transported across the interface in the absence of chemical reac- 
tions. On the other hand, the presence of two components with surface activity, involved in 
a chemical reaction, can considerably diversify the regimes of concentration-capillary insta- 
bility in a two-layer system. 

In conclusion, we note that the onset of convective instability of the surface separat- 
ing two phases leads to a sharp increase in the rate of mass transfer. We described a :necha- 
nism of hydrochemical interaction and found conditions under which such an instability may 
be due to chemical reactions. Thus, one possible method of enhancing transfer processe~ in 
industrial gas-liquid systems is to use chemisorbents, extraction agents, and solvents, with 
physicochemical properties leading to interfacial instability. Another method is to in nro- 
duce appropriate reagents and surface-active substances. 
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APPENDIX 

The following are all the nonzero elements of the matrix lla(p, q)ll in Eq. 

a(1 ,  1 ) = 2 s h a ,  a(1 ,  2 ) = a ( 9 ,  7 ) = a ( l l ,  l l ) = e  1, 

a (1 ,  3 ) = a ( 9 ,  8 ) = a ( l l ,  1 2 ) = %  a(2,  1 ) = 2 a c h a ,  

a (2, 2) ---- (1 + a) % a (2, 3) ---= (1 - -  a)  e~, a (3, 4) ----- 2 sh (hcr 

a (3, 5) = he~, a (3, 6) ---- he.~, a (4, 4) --= 2a  ch (ha), 

a (4, 5) -= (1 - -  czh) e , ,  a (4, 6) = (1 -1- a h )  % 

a(5 ,  1 ) = - - a ( 5 ,  4)~-2cr a(5 ,  2)----a(5, 3 ) - - - - - - a (5 ,  5 ) =  

- - - - - -a (5 ,  6)= l, a(6, 1)=--(3/4)ii ,  
a (6, 2) = 2a (6, 3) =- (dl/3a) a (6, 4) = i l / 4 a ,  a ( 6 , 7 ) = - - a ( 6 , S ) = : a / d ~ ,  

2a(6,  5 ) = 4 a ( 6 ,  6 ) = - - d a ( 7 ,  2 ) - - - - - -2da (7 ,  3 ) =  

= - -  (1/3a) a (7, 4) ---- a (7, 5) = 2a (7, 6) -= da (8, 2) ---- - -  i l /4d~a,  

a(6 ,  9 ) = - - a ( 6 ,  1 0 ) = a ( 7 ,  9 ) ~ - - a ( 7 ,  10)-------(1/2)a(12, 5 ) = a ,  

. a (7 ,  l l ) = - - a ( 7 ,  1 2 ) = a ( 8 ,  1 1 ) = - - a ( 8 ,  12)----ad, 

a (8, 1) = (3/4) it~rid t - -  i T tdles/4~z, 

a (8 ,  4 ) = - - 2 a ( 8 ,  6 ) =  i T ( 1 - - 1 ) t / 4 d ~ a ,  a(8,  3) = - -  i l /Sdd~a -}- 

+ i T t d x e d S a  2, a ( 8 ,  7)----a(8, 8 ) = T %  

a (8, 9) = a (8, 10) = T (1 - -  l), a (9, 1) = - -  i ldl  [ch a + (1/4cz) e~l, 

a (9 ,  2) ---- ( i / 4 ) l d l e ~ ( 1 / a - -  1), a(10,  9) = e~, a(10,  10) = % 

a (9 ,  3) ---- (i/4) l d l e , ( l  -{-- 1/a "-t- I/2~2), 

a (10, 4) = - -  i (I/d~)[h ch (ah)  + e3/4cr 

a (10, 6) = - -  (te2/4d~)(h z - -  h/~z -t- t/2az), 

a (11, 1) = i (I/d2d~)(ch cz + d l e d 4 d a ) ,  

a (11, 2) = i (le~/4d2d~)(1 - -  l / a ) ,  

a (11 ,  3) = - -  i ( led4dZd~)(1 + 1/a -1- 1/2a~), a (12, 2) = 21~r 

a (12, 1) ---- Fd M~/4dd~, a (12, 3) = " 2 ~ t a "  Ml M d S d d l a ,  

a (12, 4) = l Mb/4hd l ,  a (12, 6) = 2 a  - -  l .lVib/Shdla, 

a (12, 9) = (12, 10) = - -  i a  M d h ,  a (12, 11) ---- a (12, 12) = - -  MdMoa~ 

e a = exp a ,  e~ = exp ( - -  a) ,  

e 3 = exp (ha), et = exp ( - -  ha),  

e5 = bo/ao - -  l h /d l .  

(17): 

NOTATION 

t, time; hl and h2, widths of the liquid layers; v, p, kinematic and dynamic viscosi- 
ties; a, b, and c, concentrations of components A, B, and C; a0 and b0, concentrations at 
the bounding surfaces; D,, Db, and Dc, diffusion coefficients of components A, B, and C; o, 
surface tension at the liquid-liquid interface; fb and fc, coefficients of surface activity 
of components B and C; M b and Mc, Marangoni numbers for the reagent B and the product C, re- 
spectively; T, dimensionless rate constant of the reaction. 
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NATURAL CONVECTION INA LONG RECTANGULAR CAVITY 

K. P. Morgunov, T. Yu. Morgunova, and V. A. Misyura UDC 535,25 

We discuss an approximate analytical method of calculating the parameters of 
the motion of a gas in a long cavity induced by the presence of a heated verti- 
cal wall. Assuming the flow is plane-parallel and the longitudinal temperature 
gradient in the central region of the flow is constant, we obtain analytical 
expressions for the velocity and temperature profiles. We use the law of con- 
servation of energy in integral form to match the solution in the central re- 
gion with the end regions near the walls, and thereby obtain the flow param- 
eters without considering the structure of the flow in the end regions. 

Introduction. The structure of the flow in a closed cavity containing a gas is deter- 
mined by the temperature boundary conditions on the cavity walls. Previous studies of natu- 
ral convection in cavities have been concerned mainly with small to moderate values of the 
ratio of the horizontal dimension L of the cavity to its vertical dimension H and compara- 
tively little attention has been paid to flow in long horizontal cavities in the presence 
of a temperature gradient along the axis of the cavity. In [1-3] a two-dimensional rectangu- 
lar closed cavity was considered whose length L was much larger than its height H, while the 
vertical walls were maintained at different constant temperatures. It was assumed that at 
a certain distance from the heated wall the parameters describing the flow vary much more 
rapidly in the transverse direction than along the cavity axis. With this assumption a rela- 
tively simple solution of the Navier-Stokes equations in the Boussinesq approximation zan be 
obtained. We will assume that a solution of this type is correct for gas flow in a region 
sufficiently far from the vertical walls; this region is called the central flow region~ 
The basic problem is to explain the effect of the conditions on the vertical walls of the 
cavity on the form of the solution in the central region~ 

We discuss below an approach to the matching of the flow in the central region to the 
flow near the vertical walls. The method is based on the integral conservation laws of con- 
tinuum mechanics. 

We consider a two-dimensional rectangular closed cavity containing a gas. The length 
L of the cavity is much larger than the height H (Fig. i). The horizontal walls of the cavi- 
ty are assumed to be adiabatic. One of the vertical walls is isothermal with temperature 
T O . Two types of conditions are considered for the other vertical wall: the wall is iso- 
thermal with temperature TH, greater than To; the specific heat flux q through the wallt is 
specified. 

The equations describing the steady laminar flow of a viscous incompressible liqu:.d or 
gas in a horizontal cavity are, in dimensionless variables: 

Ou + Ov =0;  (1) 
Ox Oy 

1 ( Ou c)~g) Op 02u a2u 
u +v + --4--- (2) 

Pr 7 x  ax  " ax  2 @~ ' 
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